Optimized machine‐learning methods for predicting the long‐term viscoelastic behavior of heterogeneous concrete mixtures

Author:

Nguyen‐Sy Tuan12ORCID,Thai Minh‐Quan3,Vu Minh‐Ngoc45

Affiliation:

1. Laboratory for Computational Mechanics, Institute for Computational Science and Artificial Intelligence Van Lang University Ho Chi Minh City Vietnam

2. Faculty of Mechanical—Electrical and Computer Engineering, School of Technology Van Lang University Ho Chi Minh City Vietnam

3. Faculty of Construction Engineering University of Transport and Communications Hanoi Vietnam

4. Institute of Research and Development Duy Tan University Da Nang Vietnam

5. Faculty of Civil Engineering Duy Tan University Da Nang Vietnam

Abstract

AbstractLong‐term creep compliance is one of the most important mechanical properties for evaluating the long‐term behavior of concrete structures. This paper aims to optimize machine‐learning models to predict this viscoelastic property. The most relevant dataset available in the literature is considered, cleaned, and preprocessed to optimize the outcome. The advanced XGBoost model, which is to be the most effective shallow machine‐learning model for modeling tabular datasets, is employed in this study to maximize model accuracy. Short‐term creep compliances of a given sample at typical ages are used as input features to model the long‐term creep compliance of concrete. This approach outperforms standard machine‐learning approaches that do not include short‐term creep as an input feature. Indeed, the short‐term behavior of concrete strongly influents its long‐term one. The optimized machine model presented herein is accurate and useful for practical applications. It uses input features that are easy to obtain to predict long‐term creep compliance up to several decades, which is difficult and expensive to measure.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3