The effect of graphene oxide on dune sand cementitious composites reflected in enhancing freeze–thaw resistance: An experimental study

Author:

Wang Youqun12ORCID,He Mingsheng1,Wang Ying1,Liu Jie3,Liu Jiefeng2

Affiliation:

1. College of Hydraulic and Architectural Engineering Shihezi University Shihezi China

2. Department of Civil Engineering Tianjin University Tianjin China

3. Xinjiang Transportation Planning Surveying and Design Institute Urumqi China

Abstract

AbstractTo advance the utilization of dune sand, a sustainable albeit flawed resource, for structural engineering, the incorporation of graphene oxide (GO) is suggested as a potential means for improving durability of dune sand cementitious composites (DSCC). In this study, DSCC samples with varying GO concentrations were prepared. The effect of GO on the freeze–thaw resistance of DSCC was then studied by freeze–thaw cyclic test and mechanical test. In addition, to elucidate the mechanism underlying the observed enhancement in freeze–thaw resistance due to GO incorporation, thermogravimetric, mercury injection, adsorption, and morphological analyses were performed. The experimental results showed that incorporating GO into DSCC can enhance its freeze–thaw resistance without compromising its mechanical properties. The weight loss and relative dynamic modulus of elasticity of the specimen with 0.06 wt% GO decreased by 92.83% and 64.96%, respectively, as well as the compressive strength increased by 22.76% after 150 freeze–thaw cycles compared with the control specimen. The enhancing effect of adding GO on the freeze–thaw resistance of DSCC was found to be attributed to the promotion of hydration and the control of internal structure. Notably, the modification of GO on the smooth dune and the reinforcement of GO on the interface between dune sand particles and cement matrix was identified, which may be the new evidence for testifying the GO enhancement on the freeze–thaw resistance of dune sand cementitious composites.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3