Investigation the behavior of LWAC encased steel columns after exposure to elevated temperature

Author:

Al‐Talqani Noor Al‐Huda1,Al‐Thairy Haitham12ORCID

Affiliation:

1. Civil Engineering Department, College of Engineering University of Al‐Qadisiyah Al Diwaniyah Iraq

2. College of Engineering University of Warith Al‐Anbiyaa Karbala Iraq

Abstract

AbstractThis paper presents experimental and numerical investigations on the behavior of eccentrically loaded lightweight aggregate concrete encased steel (LWACES) columns after exposing to elevated temperatures. Sixteen concrete encased steel (CES) columns were considered in the study, 12 of which were exposed to elevated temperature then eccentrically loaded up to failure at different eccentricity ratios. The effect of temperature on the load–displacement relationships, failure load, and failure modes of the concrete encased steel (CES) columns was monitored and evaluated. Experimental results have shown that as the temperature increases, the load bearing capacity of the CES columns decreased. It has also been showed that, at high temperature, the normal‐weight concrete encased steel (NWCES) columns experienced larger degradation of the load bearing capacity compared to that of LWACES columns. Also, this study presents a numerical simulation of the behavior of LWACES columns at elevated temperatures with eccentric compressive load. The numerical model was implemented in conducting parametric study to understand the effect of temperature distribution, concrete cover, eccentricity ratio, and high temperature levels on the behavior of the thermally exposed (CES) columns. Numerical results have revealed that, at temperature value of 500°C, the ultimate capacity of LWACES with eccentricity ratios of 0.75, and 1 has decreased by 17%, and 23%, respectively, compared to that of the column with eccentricity ratio of 0.5.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3