Automated machine learning techniques for estimating of elastic modulus of recycled aggregate concrete

Author:

Chien‐Ta Chen1,Shing‐Wen Tsai2,Liang‐Hao Hsiao2

Affiliation:

1. School of Civil Engineering, School of Architectural Engineering Shandong University of Technology Zibo China

2. College of Human Ecology and Design Chien Hsin University of Science and Technology Taoyuan Taiwan, ROC

Abstract

AbstractThe utilization of recycled aggregates (RA) in producing novel concrete can contribute to the resilience of the building sector. However, it is important to thoroughly evaluate the mechanical properties of this variety of aggregate before incorporating it into various applications. This study used Gaussian process regression (GPR) and Decision Tree (RT) to estimate the because the current equations for the modulus of elasticity of concrete may not apply to recycled aggregate concrete (RAC) concrete. On the other hand, the Dwarf mongoose optimizer (DMO) and Phasor particle swarm optimizer (PPSO) were combined with related models. They formed hybrid models to improve the accuracy of developed models. In this study, the hybrid models were evaluated and compared in three phases, which 70% of the samples for training, 15% for validation, and the remaining 15% for testing phase. In addition, several statistical evaluation metrics were employed to assess the precision and effectiveness of the established models. The performance of the models was compared with error metrics and coefficient correlation to obtain a suitable model. The results generally indicate that the PPSO algorithm showed a more acceptable performance than other algorithms coupled with models. In general, GPR‐PPSO can obtain and with 0.62% and 32% difference than RT‐PPSO.

Funder

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3