Affiliation:
1. Department of Materials and Bioprocess Engineering School of Chemical Engineering, University of Campinas Campinas SP Brazil
2. Department of Chemical Engineering Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo Diadema SP Brazil
3. Department of Chemical Engineering Federal University of Ceará Fortaleza CE Brazil
Abstract
AbstractMucin, a glycoprotein with viscoelastic properties, and silk fibroin, a protein excreted from silkworms with properties of thermal and mechanical resistance, have been probed as building blocks in the design of biomaterials. Aiming to evaluate the interaction and miscibility between mucin and fibroin, we synthesized silk fibroin and mucin (SF/MU) blends for biomedical applications. The morphological analysis of the SF/MU blends showed the presence of two phases, suggesting a partial miscibility between the polymers. The degradation temperature of the SF/MU blends increased with an increase in the silk fibroin content, indicating that silk fibroin contributed to the thermal stability of the blends. The glass transition temperature of the SF/MU blends lay between the values of the pure polymers. The Fourier‐transform infrared spectroscopy results pointed out that the interaction between fibroin and mucin occurred between the amine group of silk fibroin and mucin carboxyl and hydroxyl groups. The outcomes of this work provided essential information on the miscibility of the SF/MU blends. These findings will be critical for further studies with fibroin and mucin‐based biomaterials, especially in mucoadhesive systems and wound healing applications.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献