Heavy grazing causes plant cluster fragmentation of sparse grasses

Author:

Wang Zihan1ORCID,Lv Shijie2ORCID,Liu Hongmei3,Chen Chen1,Li Zhiguo1,Wang Zhongwu1,Han Guodong1

Affiliation:

1. College of Grassland, Resources and Environment Inner Mongolia Agricultural University Hohhot Inner Mongolia China

2. Science College Inner Mongolia Agricultural University Hohhot Inner Mongolia China

3. Forestry Research Institute of Inner Mongolia Autonomous Region Hohhot Inner Mongolia China

Abstract

AbstractCleistogenes songorica, as a clustered grass, is the main grassland flora of the Stipa breviflora desert grassland. Some studies have shown that the constructive species of S. breviflora (sparse cluster type) is prone to cluster fragmentation; however, research on C. songorica is relatively rare. Then will the C. songorica plant population (dense cluster type) also have cluster fragmentation under the influence of intense grazing? To answer this question, we used variance analysis and geo‐statistical methods. The spatial distribution of C. songorica in S. breviflora desert steppe in Inner Mongolia was measured under four grazing intensities (no grazing, CK, 0 sheep·ha−1·half year−1; light grazing, LG, 0.93 sheep·ha−1·half year−1; moderate grazing, MG, 1.82 sheep·ha−1·half year−1; and heavy grazing, HG, 2.71 sheep·ha−1·half year−1) and four scales (10 cm × 10 cm, 20 cm × 20 cm, 25 cm × 25 cm, 50 cm × 50 cm). We then analyzed C. songorica whether fragmentation was present. The results showed that increased grazing intensity is associated with increased density and decreased height, coverage, and standing crop of C. songorica. The spatial distribution of C. songorica was affected by structural factors, and spatial heterogeneity decreased with increased spatial scale. With increased grazing intensity and spatial scale, the patch area of C. songorica gradually increased and tended toward band distribution. In summary, increased grazing intensity and spatial scale led to weakened heterogeneity of C. songorica spatial distribution and increased consistency.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3