Radial basis function neural network path loss prediction model for LTE networks in multitransmitter signal propagation environments
Author:
Affiliation:
1. Department of Management Information Systems Girne American University Kyrenia Cyprus
2. Department of Electrical and Electronics Engineering University of Lagos Lagos Nigeria
3. Software Development Department IAF SAWII Limited Lagos Nigeria
Publisher
Wiley
Subject
Electrical and Electronic Engineering,Computer Networks and Communications
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.4680
Reference35 articles.
1. Path loss prediction based on machine learning: principle, method, and data expansion;Zhang Y;Appl Sci,2019
2. Path loss prediction in urban environment using learning machines and dimensionality reduction techniques
3. A Machine-Learning-Based Connectivity Model for Complex Terrain Large-Scale Low-Power Wireless Deployments
4. Path loss prediction based on machine learning techniques: principal component analysis, artificial neural network, and Gaussian process;Jo H‐S;Sensors,2020
5. UccellariM FacchiniF SolaM SirignanoE VitettaGM BarbieriA TondelliS.On the use of support vector machines for the prediction of propagation losses in smart metering systems. In Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP) Vietri sul Mare Italy; 13–16 September2016:1‐6.
Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning-Driven Advancements in Liposomal Formulations for Targeted Drug Delivery: A Narrative Literature Review;Current Drug Delivery;2024-06-27
2. Ultrahigh frequency path loss prediction based on K-nearest neighbors;International Journal of Microwave and Wireless Technologies;2024-05-22
3. Application of Artificial Neural Networks for Prediction of Received Signal Strength Indication and Signal-to-Noise Ratio in Amazonian Wooded Environments;Sensors;2024-04-16
4. Radio Environment Map Construction Based on Privacy-Centric Federated Learning;IEEE Access;2024
5. The Current Progress and Future Prospects of Path Loss Model for Terrestrial Radio Propagation;Electronics;2023-12-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3