SOX2 Activation Using CRISPR/dCas9 Promotes Wound Healing in Corneal Endothelial Cells

Author:

Chang Yoon Kyung1,Hwang Jin Sun1,Chung Tae-Young2,Shin Young Joo1ORCID

Affiliation:

1. Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea

2. Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea

Abstract

Abstract There are no effective treatments for corneal endothelial diseases, except for corneal transplantation, as human corneal endothelial cells (hCECs) do not regenerate. The regeneration of hCECs could be induced through regulation of the expression of specific genes. In this study, we investigated whether the overexpression of sex-determining region Y-box 2 (SOX2) can regenerate hCECs in vivo and in vitro. SOX2 was activated using the clustered regularly interspaced short palindromic repeats (CRISPR)/deactivated CRISPR-associated protein 9 (dCas9) activation system. Genes were transfected into the corneal endothelium of Sprague-Dawley rats. Central corneal thickness and opacity were measured, and alizarin red S staining was performed. Corneal opacity and central corneal thickness were reduced in the SOX2 group compared with the control group. The density of CECs was higher in the SOX2 group compared with the control group. Additionally, hCECs were cultured and analyzed after overexpressing SOX2. Cell viability, proliferation rate, and the number of cells in S-phase were increased after SOX2 overexpression (p < .05). Cyclin-dependent kinase 1 and cyclin D1 were found to be overexpressed (p < .05). WNT signaling was repressed, and the AKT pathway was activated by SOX2 overexpression. Mitochondrial oxidative stress and energy production were increased by SOX2 overexpression (p < .05). In conclusion, SOX2 activation promotes wound healing and regeneration in CECs. SOX2 activation using the CRISPR/dCas9 system may thus be useful for the treatment of hCEC diseases.

Funder

Hallym University

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3