Affiliation:
1. Department of Biomedical Engineering City University of Hong Kong Hong Kong 999077 China
2. Hong Kong Center for Cerebra‐Cardiovascular Health Engineering Hong Kong Science Park New Territories Hong Kong China
Abstract
AbstractThin and flexible skin electronics have attracted great attention for their applications in monitoring human health status continuously and intelligently. However, the versatility of these electronics is impeded by the performance of power supply and sensor modules, and their portability is also restricted by the need for external devices to handle data processing and analysis. Here, this work presents a wearable electronics system with health status sensing and visualization system (HSSVS), where the power is supplied by sweat‐activated batteries (SABs). The reported system enables the detection of crucial human physiological information, such as the Na+ concentration and the pH level in sweat, as well as skin temperature. The electrodes of the sensors and the batteries are fabricated by the laser ablation method. The laser‐induced polyimide (PI)/gelatin‐based graphene (LIGA) based sensors show a wide linear range for the sensing markers with high sensitivity, and high selectivity. The SABs based on laser‐induced PI/gelatin based graphene anchored with manganese dioxide (LIGA@MnO2) can support the entire sensing and visualization system with ultrathin, excellent biocompatibility, and mechanical properties. Additionally, incorporating a visualization design such as color changes in LEDs enables users to easily identify variations in health status. This integrated system demonstrates promising potential in smart sensing devices for health management.
Funder
National Natural Science Foundation of China
City University of Hong Kong
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献