Affiliation:
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 China
2. Department of Radiology Shanghai Songjiang District Central Hospital Shanghai 201600 China
3. Department of Radiology Shanghai Fourth People's Hospital School of Medicine Tongji University Shanghai 200434 China
4. CQM‐Centro de Quimica da Madeira Universidade da Madeira 9020‐105 Funchal Portugal
Abstract
AbstractDevelopment of tumor microenvironment (TME)‐responsive nanomedicines with simple components for precision tumor theranostics still maintains a great challenge. Here, the design of an intelligent nanocluster (NC) system assembled from gossypol‐mediated crosslinking of phenylboronic acid‐modified ultrasmall iron oxide nanoparticles (USIO NPs) is presented. The gossypol functions as both a chemotherapy (CT) drug and a crosslinker through phenylborate ester bonds that are sensitive to both reactive oxygen species (ROS) and pH. The developed gossypol‐USIO NCs (for short, G‐USIO NCs), having a size of 34.2 nm, possess stability under physiological conditions, enable intracellular ROS generation and glutathione depletion to modulate TME, promote apoptosis of cancer cells in vitro, and inhibit tumor/lung metastasis in vivo through gossypol‐mediated CT and USIO‐mediated chemodynamic therapy owing to the ROS‐ and pH‐triggered dissociation of the NCs to release gossypol and Fe at the tumor site. Likewise, the dissociated USIO NPs from the NCs afford TME‐facilitated T1‐weighted magnetic resonance (MR) imaging. Furthermore, the effects of the tumor T1 MR imaging and the combination therapy can be elevated by ultrasound‐targeted microbubble destruction‐induced cavitation and sonoporation. The designed G‐USIO NCs with simple ingredients are likely developed to be a promising theranostic nanomedicine formulation for ultrasound‐facilitated precision theranostics of various tumor types.
Funder
Science and Technology Commission of Shanghai Municipality
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献