Analyzing Electrochemical Sensing Fundamentals for Health Applications

Author:

Alam Maksud M.1,Mitea Victor1,Howlader Matiar M. R.12ORCID,Selvaganapathy Ponnambalam Ravi23,Deen M. Jamal12

Affiliation:

1. Department of Electrical and Computer Engineering McMaster University Hamilton ON L8S 4K1 Canada

2. School of Biomedical Engineering McMaster University Hamilton ON L8S 4K1 Canada

3. Department of Mechanical Engineering McMaster University Hamilton ON L8S 4L7 Canada

Abstract

AbstractHumans continuously interact with physical, chemical, and biological environments that influence their health, safety, and quality of life. Sensing devices, such as electrochemical sensors that translate environmental qualities into electrical signals, are crucial for detecting biomarker concentrations in various biofluids. However, the understanding of electrochemical sensing is often incomplete, necessitating further study of chemical reactions and sensor‐electrode interactions for healthcare applications. This review analyzes crucial topics in chemical reactions in electrochemical sensing environments. First, the dynamics of chemical energy, the roles of acidic and alkaline fluids, chemical reaction tendencies, thermodynamic equilibria, Gibbs free energy, water dissociation, and the pH scale are discussed. Sensor materials or biomarkers undergo oxidation and reduction reactions in electrochemical sensing. Oxygen‐derived radicals and nonradical reactive species significantly influence biochemical reactions, cellular responses, and clinical outcomes. Then, the review delves into the impact of oxidation reduction reactions on human pathophysiology, redox reactions in hemoglobin, redox environments in human serum albumin and cells/tissues, and thermodynamics of biological redox reactions. Finally, recent advances in electrochemical techniques are presented and research challenges and future perspectives in electrochemical sensing for health applications are addressed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3