Nanofiller‐Induced Enhancement of PVDF Electroactivity for Improved Sensing Performance

Author:

Chatterjee Arka1,Das Avijit1,Saha Kundan1,Jeong Unyong1ORCID

Affiliation:

1. Department of Materials Science and Engineering Pohang University of Science and Technology 77 Cheongam‐Ro Nam‐Gu Pohang 37673 Republic of Korea

Abstract

AbstractPiezoelectric self‐powered sensors are promising platforms for wearable portable devices. Poly(vinylidene fluoride) (PVDF) and its copolymer derivatives are extensively explored as a soft piezoelectric material owing to their high piezoelectric coefficient, chemical thermal stability, biocompatibility, lightweight, and excellent flexibility. It is proved that the dominance of the electroactive (EA) β‐phase crystals versus the non‐electroactive α‐phase crystals is one of the key parameters to obtaining high piezoelectric performance of PVDF. Conventional methods, such as mechanical stretching, electrical poling, and high‐temperature annealing, are investigated to enhance the fraction of the β‐phase. Recently, embedding nanoscale fillers in the PVDF matrix has been investigated to further increase the β‐phase fraction and achieved considerable advances. The introduction of nanofillers is also advantageous in terms of improving the electrical conductivity and dielectric properties of PVDF, which are not readily obtained through conventional methods. This review introduces the principles of EA phase transformation in the presence of nanofillers and summarizes recent advances achieved by introducing various fillers, such as perovskites, oxide semiconductors, and 2D chalcogenides. The potential sensor applications of the PVDF nanocomposites responding to temperature, light, acoustic, and mechanical stimuli are reviewed. This review ends with the outlook of this new approach.

Funder

National Research Foundation of Korea

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3