Adaptive Recursive Least Squares Denoising in Ventricular Fibrillation ECG Signals

Author:

Ding Youde12ORCID,Liao Yuan1,Li Yongqin3,Wang Jing12,He Ji2,Xie Guoxi12,Zhang Guiying12

Affiliation:

1. The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital Qingyuan 511500 China

2. School of Biomedical Engineering Guangzhou Medical University Guangzhou 511436 China

3. School of Biomedical Engineering Third Military Medical University Chongqing 400038 China

Abstract

AbstractCardiac arrest is a fatal and urgent disease in humans. A high‐quality electrocardiogram (ECG) has a positive guide to the success of defibrillation and resuscitation. However, because of artificial motion interference and ambient noise, reliable ECG signals can be obtained only during chest compression (CC) pauses. To address this issue, the adaptive recursive least squares (RLS) denoising approach is proposed. First, the ECG signals of porcine are divided into three groups: CC, without CC, and both with and without CC. Then, five Gaussian noises with different signals‐to‐noise ratios (SNR) and five noises with different distribution types are added, respectively. Furthermore, RLS is compared with six other different denoising approaches. Experimental results demonstrate significant differences between RLS and the other six algorithms in main metrics. SNR and related factors are larger, while the root mean square error is smaller. In conclusion, RLS can significantly eliminate many types of ambient noise, and improve the quality of ECG signals during cardiopulmonary resuscitation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3