Cellulose‐Derived Wearable Carbon Nanoflake Sensors Customized by Semiconductor Laser Photochemistry

Author:

Tao Yufeng12ORCID,He Kun1,Zhang Erjin3,Tan Jing1,Hao Hui4,Ren Xudong1

Affiliation:

1. Institute of Micro‐nano Optoelectronics and Terahertz Technology Jiangsu University Zhenjiang 212013 China

2. Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China

3. Institute of Energy Research Jiangsu University Zhenjiang 212013 China

4. Jiangsu Key Laboratory of Optoelectronic Technology Nanjing Normal University Nanjing 210023 China

Abstract

AbstractMulti‐functional wearable electrical materials have been regarded as one of the most pivotal cornerstones for the booming internet of things (IoTs), biomimetic robotics/science, and sensory e‐skins. Nevertheless, customizable, high‐throughput, batch‐fabricated, function‐integrated wearable electronics remain technologically challenging to traditional material engineering. Hereby, a cellulose‐converted active amorphous carbon nanomaterial is developed via a transfer‐free, precursor‐free rapid laser synthesis method incorporating deformation‐tolerant waste papers. The lattice fringe spacing of laser‐synthesized carbon nanoflake is ≈0.305 nm topologically distinct from graphene or carbon dots. The nanostructured three‐dimensional (3D) carbon network exhibits desirable mechanical flexibility, high hygroscopicity/electrical conductivity, large ion storing capacity for Zn2+ or Na+, high sensitivity to pressure, and a natural microwave absorbing ratio (> 37 dB at the terahertz range). Abundant percolation pathways inside cellulose/carbon composite networks offered fast electrolyte diffusion and carrier mobility. A series of low‐cost highly‐deformable interdigitated supercapacitors, tactile sensors, electrical circuits, and functional coatings are experimentally fabricated and identified, enabling waste paper as a function‐magnified meta platform for e‐skins, wearable energy devices, or IoTs interfaces.

Funder

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3