Cross‐Correlated Quantum Thermometry Using Diamond Containing Dual‐Defect Centers

Author:

Gupta Madhav1,Zhang Tongtong1,Yeung Lambert2,Zhang Jiahua1,Tan Yayin1,Yiu Yau Chuen1,Zhang Shuxiang13,Wang Qi4,Wang Zhongqiang4,Chu Zhiqin15ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering The University of Hong Kong Pokfulam Road Hong Kong SAR China

2. 6C Technology Limited Dai Hei St, Tai Po Hong Kong SAR China

3. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering Sichuan University Chengdu 610065 China

4. Dongguan Institute of Opto‐Electronics Peking University Dongguan Guangdong 523808 China

5. School of Biomedical Sciences The University of Hong Kong Pokfulam Road Hong Kong SAR China

Abstract

AbstractThe contactless temperature measurement at micro/nanoscale is vital to a broad range of fields in modern science and technology. The nitrogen‐vacancy (NV) center, a kind of diamond defect with unique spin‐dependent photoluminescence, is recognized as one of the most promising nanothermometers. However, this quantum thermometry technique is prone to a number of possible perturbations, which will unavoidably degrade its actual temperature sensitivity. Here, for the first time, a cross‐validated optical thermometry method is developed using a bulk diamond sample containing both NV centers and silicon‐vacancy (SiV) centers, achieving a sensitivity of 22 and 86 mK (√Hz)−1 respectively. Particularly, the latter has been intrinsically immune to those influencing perturbations for the NV‐based quantum thermometry, hence serving as a real‐time cross‐validation system. As a proof‐of‐concept demonstration, a trustworthy temperature measurement is shown under the influence of varying magnetic fields, which is a common artefact present in practical systems. This multi‐modality approach allows synchronized cross‐validation of the measured temperature, which is required for micro/nanoscale quantum thermometry in complicated environments such as a living cell.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3