Affiliation:
1. College of Engineering and Applied Sciences National Laboratory of Solid State Microstructure Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
2. Jiangsu Key Laboratory of Artificial Functional Materials State Key Laboratory of Analytical Chemistry for Life Science Nanjing University Nanjing 210023 China
3. Key Laboratory of Intelligent Optical Sensing and Manipulation Nanjing University Nanjing 210093 China
Abstract
AbstractEpidermal electronics is an emerging wearable platform that involves attaching deformable forms of devices to the skin. Epidermal electrodes represent a vital component of this technology, as they provide a direct electronic interface with the skin for sensing and stimulation. However, most of the current electrodes are built on non‐permeable elastomer substrates, which can limit their long‐term, continuous operations in a non‐invasive manner. Fortunately, recent advancements in conductive materials and fabrication techniques have enabled high‐performance epidermal electrodes that are comfortable to wear. In order to track the latest progress, this review article first introduces the designs of permeable structures and the preparation of conductive electrodes. The subsequent discussion elaborates on effective strategies to achieve desirable properties, such as high conductivity, stretchability, skin adhesion, and biocompatibility. The emerging applications of permeable epidermal electrodes are also summarized. Finally, this review concludes with the current challenges and future directions of breathable epidermal electrodes.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献