Fabrication and Characterization of Electrically Conductive 3D Printable TPU/MWCNT Filaments for Strain Sensing in Large Deformation Conditions

Author:

Koohbor Behrad12ORCID,Xue Wei1,Uddin Kazi Z.1ORCID,Youssef George3ORCID,Nerbetski Daniel1,Steiger Bradley1,Kenney Joseph1,Yarem Dana1

Affiliation:

1. Department of Mechanical Engineering Rowan University 201 Mullica Hill Rd. Glassboro NJ 08028 USA

2. Advanced Materials and Manufacturing Institute Rowan University 201 Mullica Hill Rd. Glassboro NJ 08028 USA

3. Experimental Mechanics Laboratory Department of Mechanical Engineering San Diego State University 5500 Campanile Drive San Diego CA 92182 USA

Abstract

AbstractThis study investigates the development of thermoplastic polyurethane (TPU) filaments incorporating multi‐walled carbon nanotubes (MWCNT) to enhance strain‐sensing capabilities. Various MWCNT reinforcement ratios are used to produce customized feedstock for fused filament fabrication (FFF) 3D printing. Mechanical properties and the piezoresistive response of samples printed with these multifunctional filaments are concurrently evaluated. Surface morphology and microstructural observations reveal that higher MWCNT weight percentages increase filament surface roughness and rigidity. The microstructural modifications directly influence the tensile strength and strain energy of the printed samples. The study identifies an apparent percolation threshold within the 10–12 wt.% MWCNT range, indicating the formation of a conductive network. At this threshold, higher gauge factors are achieved at lower strains. A newly introduced Electro‐Mechanical Sensitivity Ratio (ESR) parameter enables the classification of composite behaviors into two distinct zones, offering the ability to tailor self‐sensing structures with on‐demand properties. Finally, flexible structures with proven application in soft robotics and shape morphing are fabricated and tested at different loading conditions to demonstrate the potential applicability of the custom filaments produced. The results highlight a pronounced piezoresistive response and superior load‐bearing performance in the examined structures.

Funder

U.S. Department of Defense

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3