Affiliation:
1. State Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
2. Center for Nanoanalysis and Electron Microscopy (CENEM) and Institute of Micro‐ and Nanostructure Research (IMN) Friedrich‐Alexander‐Universität Erlangen‐Nürnberg 91058 Erlangen Germany
Abstract
AbstractIn this study, Sb‐doped SnO2 nanosphere composite polypyrrole nanohybrid with different doping ratios (0–5 mol%, Sb:Sn) and composite ratios (0–30 mol%, Sb‐doped SnO2:polypyrrole) is synthesized by hydrothermal method and in situ chemical oxidation method. The flexible sensors are fabricated by drop‐casting the materials on polyamide substrate and gas sensing performances are investigated systematically at room temperature. The results show that the 3 at% Sb‐doped 20 mol% SnO2/polypyrrole nanohybrid exhibits excellent sensitivity (≈213% toward 100 ppm NH3) at room temperature, which are about 3 times as much as those of polypyrrole, as well as excellent selectivity and humidity resistance, reliable repeatability, and good robustness. The enhance sensing performance can be attributed to the formation of p‐n junction between conducting polymers and metal oxide semiconductor materials and the doping of Sb elements allows more electrons to transfer to polypyrrole, which further thickens the depletion layer and decreases hole concentrations in air. Therefore, Sb‐doped SnO2/polypyrrole nanohybrid may be a promising sensitive material for the design and manufacture of room temperature flexible ammonia gas sensors.
Funder
National Postdoctoral Program for Innovative Talents
Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
National Key Research and Development Program of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献