A PEDOT:PSS‐Based Composite Hydrogel as a Versatile Electrode for Wearable Microneedle Sensing Platforms

Author:

Shirzadi Erfan1,Huynh Michelle1,GhavamiNejad Peyman1,Zheng Hanjia1,Saini Agosh1,Bakhshandeh Fatemeh2,Keyvani Fatemeh1,Mantaila Dragos1,Rahman Fasih A.3,Quadrilatero Joe3,Soleymani Leyle245,Poudineh Mahla1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering University of Waterloo Waterloo ON N2L 3G1 Canada

2. Department of Engineering Physics McMaster University Hamilton ON L8S 4L8 Canada

3. Department of Kinesiology and Health Sciences University of Waterloo Waterloo ON N2L 3G1 Canada

4. School of Biomedical Engineering McMaster University Hamilton ON L8S 4L8 Canada

5. Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON L8S 4L8 Canada

Abstract

AbstractAdvances in biomarker detection have acclaimed a new era of biosensors that enable continuous monitoring of health status, device miniaturization, and wearability. This transition toward integrated, wearable biosensors has necessitated the co‐development of novel materials that can adequately support the operation of these devices. In this study, a novel type of electrode is presented that is suitable for use in wearable electrochemical biosensors. The electrode is constructed using a biocompatible composite hydrogel and takes the form of a hydrogel microneedle (HMN) patch. It is specifically designed for analyzing interstitial fluid. The HMN electrode is a combination of poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a highly conductive polymer, and graphene oxide, incorporated into a crosslinked hydrogel network of methacrylated hyaluronic acid. To ensure the successful penetration of the skin, the fabrication process is carefully optimized to create sharp needles. To assess the performance of the HMN electrode, electrochemical tests are conducted using an ex vivo porcine skin model. Additionally, HMN electrode's suitability is demonstrated as the working electrode of a wearable electrochemical biosensor for in vivo measurement using a rat model. The findings highlight the advancement of the HMN electrode array as an alternative to solid microneedles, representing the next generation of polymeric electrodes.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3