Affiliation:
1. Department of Electrical and Computer Engineering University of Waterloo Waterloo ON N2L 3G1 Canada
2. Department of Engineering Physics McMaster University Hamilton ON L8S 4L8 Canada
3. Department of Kinesiology and Health Sciences University of Waterloo Waterloo ON N2L 3G1 Canada
4. School of Biomedical Engineering McMaster University Hamilton ON L8S 4L8 Canada
5. Michael G. DeGroote Institute for Infectious Disease Research Hamilton ON L8S 4L8 Canada
Abstract
AbstractAdvances in biomarker detection have acclaimed a new era of biosensors that enable continuous monitoring of health status, device miniaturization, and wearability. This transition toward integrated, wearable biosensors has necessitated the co‐development of novel materials that can adequately support the operation of these devices. In this study, a novel type of electrode is presented that is suitable for use in wearable electrochemical biosensors. The electrode is constructed using a biocompatible composite hydrogel and takes the form of a hydrogel microneedle (HMN) patch. It is specifically designed for analyzing interstitial fluid. The HMN electrode is a combination of poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a highly conductive polymer, and graphene oxide, incorporated into a crosslinked hydrogel network of methacrylated hyaluronic acid. To ensure the successful penetration of the skin, the fabrication process is carefully optimized to create sharp needles. To assess the performance of the HMN electrode, electrochemical tests are conducted using an ex vivo porcine skin model. Additionally, HMN electrode's suitability is demonstrated as the working electrode of a wearable electrochemical biosensor for in vivo measurement using a rat model. The findings highlight the advancement of the HMN electrode array as an alternative to solid microneedles, representing the next generation of polymeric electrodes.
Funder
Natural Sciences and Engineering Research Council of Canada
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献