Highly Stretchable Textile Knitted Interdigital Sensor for Wearable Technology Applications

Author:

Yilmaz Ayse Feyza1,Ahmed Ibrahim Adel Khamis1,Gumus Cagatay1,Ozlem Kadir2,Cetin Munire Sibel1,Atalay Asli Tuncay3,Ince Gökhan2,Atalay Ozgur1ORCID

Affiliation:

1. Faculty of Textile Technologies and Design Textile Engineering Department Istanbul Technical University Istanbul 34437 Turkey

2. Faculty of Computer and Informatics Engineering Computer Engineering Department Istanbul Technical University Istanbul 34469 Turkey

3. Faculty of Technology Textile Engineering Department Marmara University Istanbul 34854 Turkey

Abstract

AbstractWearable technology applications have experienced remarkable development and advancements, with soft and stretchable strain sensors playing a significant role in this progress. Despite the promising potential of combed‐shaped interdigital capacitive strain sensors in wearable electronics, several challenges exist, including limited stretchability, universal mass fabrication, and seamless integration into diverse clothing parts. This study presents a textile knitted interdigital capacitive sensor that incorporates stretchable conductive yarn, produced using textile twisting technology, to achieve stretchability and adaptability, allowing seamless conformation to human body movements and textile materials. The fabrication process involves embedding the interdigital electrodes and interconnections directly into the fabric through textile knitting technology, ensuring robust integration. Furthermore, this work presents opportunities for commercializing the stretchable interdigital strain sensor through a low‐cost and mass production strategy. Electromechanical characterization demonstrates exceptional performance with high stretchability (≈230%), excellent linearity (R2 = 0.997), a gauge factor (GF) of −0.68 representing relative capacitance change, and a rapid response time of 66 ms. To validate the usability of sensors in wearable technology, a knee brace application is employed to investigate capacitance changes during walking and cycling exercises. This approach will accelerate the accessibility of wearable stretchable interdigital sensors for all.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

HORIZON EUROPE European Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraints on Planar and Planar Interdigital Capacitors used in Sensors;2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2024-06-27

2. Design and Scalable Fast Fabrication of Biaxial Fabric Pouch Motors for Soft Robotic Artificial Muscle Applications;Advanced Intelligent Systems;2024-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3