3D characterization of abnormal grain growth in nanocrystalline nickel

Author:

Zhu Wanquan123ORCID,Huang Xiaobing1,Cai Wei1,Huang Tianlin12,Wu Guilin14ORCID,Huang Xiaoxu12

Affiliation:

1. International Joint Laboratory for Light Alloys College of Materials Science and Engineering Chongqing University Chongqing China

2. Shenyang National Laboratory for Materials Science College of Materials Science and Engineering Chongqing University Chongqing China

3. Laboratory for Ultrafast Transient Facility Chongqing University Chongqing China

4. Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing China

Abstract

AbstractAbnormal grain growth, a pervasive phenomenon witnessed during the annealing of nanocrystalline metals, precipitates a swift diminution of the distinctive properties inherent to such materials. Historically, conventional transmission electron microscopy has struggled to efficiently procure comprehensive five‐parameter crystallographic information from a substantial number of grain boundaries in nanocrystalline metals, thus inhibiting a deeper understanding of abnormal grain growth behavior within nanocrystalline materials. In this study, we utilize a high‐throughput characterization method—three‐dimensional orientation mapping in the TEM (3D‐OMiTEM) to characterize the crystallographic five‐parameter character of grain boundaries with an area of over 3.4 × 106 nm2 in an abnormally grown nanocrystalline nickel sample. When coupled with existing theoretical simulation results, it is discerned that the grain boundary population shows a relatively large scatter when it is correlated to the calculated grain boundary energy; the grain boundaries of abnormally grown grains exhibit lower grain boundary energy compared to those that have not undergone abnormal growth. Merging high‐throughput grain boundary information obtained from three‐dimensional orientation mapping data with grain boundary properties derived from high‐throughput theoretical calculations following the concept of materials genome engineering will undoubtedly facilitate further advancements in comprehending and discerning the interfacial behaviors of crystalline materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3