Affiliation:
1. Environment Research Laboratory, Faculty of Science Nepal Academy of Science and Technology Lalitpur Nepal
2. Department of Microbiology St. Xavier's College Kathmandu Nepal
3. Central Department of Microbiology Tribhuvan University Kathmandu Nepal
Abstract
AbstractBiofilm development in gram negative bacterial contaminants in water supply systems is linked to persistence as well as antibiotic resistance, which threatens water quality and hence the public health. This study aimed to investigate phenotypic and genetic capacity of biofilm formation by Escherichia coli isolated from supply water with their antibiotic susceptibility pattern. Altogether fifty water samples collected from a city supply water distribution scheme in Kathmandu were analyzed to assess the physicochemical and microbiological quality. Comparing Nepal's national drinking water quality standards 2022, conductivity (4%), turbidity (18%), iron (28%), and residual chlorine (8%) were found exceeding the values above the standards. Among total, 40% of water samples were contaminated with total coliform bacteria. E. coli and Citrobacter species were dominant and isolated from 20 (64.52%) and 11 (35.48%) water samples, respectively. Antibiotic susceptibility testing revealed that E. coli isolates were resistant to ampicillin (20%), nitrofurantoin (10%), and cefotaxime (10%). Citrobacter spp. (54.54%) were found multidrug resistant (MDR) while none of the isolates of E. coli were MDR. Of total, 45% of the isolates developed biofilm while testing with the Microtiter plate method. Biofilm‐forming genes bcsA and csgD in E. coli isolates were detected with polymerase chain reaction (PCR) employing specific primers. bcsA and csgD genes were detected in 55% and 45% of the isolates, respectively. This study confirms the occurrences of biofilm forming and antibiotic resistant bacteria like E. coli in the drinking water supply system in Kathmandu alarming its environmental circulation and possible public health threat. Although further study is warranted, this study suggests public health and drinking water treatment interventions to mitigate the biofilm forming antibiotic resistant potential pathogens from supply water in Kathmandu, Nepal.Practitioner Points
Forty percent of tested drinking water samples in Kathmandu were contaminated with total coliform bacteria.
E. coli and half of Citrobacter spp. isolates were resistant to multiple antibiotics.
bcsA and csgD genes were detected in biofilm producing E.coli isolates.
Funder
Nepal Academy of Science and Technology
United Nations Educational, Scientific and Cultural Organization