Computational basis of TEAD‐3 protein noncovalent inhibition: 3D‐QSAR modeling and molecular dynamics simulation

Author:

Kaviani Bita1,Dehkordi Marzieh Ghani2,Haghshenas Hamed3ORCID

Affiliation:

1. Division of Genetics, Department of Biology Faculty of Sciences, Islamic Azad University, Shahrekord Branch Shahrekord Iran

2. Department of Biology, Faculty of Natural Sciences University of Tabriz Tabriz Iran

3. Department of Chemistry Temple University Philadelphia Pennsylvania USA

Abstract

AbstractThe tumor‐suppressing phosphorylation cascade is primarily regulated by transcriptional enhanced associate domain (TEAD) transcription factors, and the overexpression of these factors is associated with tumorigenesis and cancer progression. The central pocket of TEAD protein can be targeted by noncovalent inhibitors, and therefore, investigating the interaction patterns for TEAD and its available inhibitors seems essential. In this regard, molecular dynamics simulations were conducted to identify the most potent TEAD3 noncovalent inhibitors and to study TEAD3–inhibitor interaction patterns. We developed a 3D‐quantitative structure–activity relationship model to investigate the structure–activity correlation for the available TEAD3 inhibitors. Our results indicated the role of Tyr230, Val317, Thr333, Met367, Cys368, Met371, Phe394, Ile396, Gln398, and Phe416 residues in TEAD3–inhibitor interactions. Dihydropyrazolo pyrimidines and compound 2 were identified as the most potent TEAD3 noncovalent inhibitors. The Comparative Molecular Field Analysis model analysis identified the hydrophobic‐favored regions around the pyrazolo[1,5‐a]pyrimidin‐7(4H)‐one ring and the unfavored steric regions around cyclohexane and phenyl groups of dihydropyrazolo pyrimidines.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3