Reproducible and acid‐responsive Rhodamine B/PEG functioned nanographene oxide‐Au nanocomposites for surface‐enhanced Raman scattering sensing

Author:

Qian Wenhao1,Xing Min1,Ye Mao1,Huang Xiaoyu2ORCID,Li Yongjun2ORCID,Hao Bingjie2

Affiliation:

1. Department of Stomatology Shanghai Xuhui District Dental Center Shanghai China

2. Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai China

Abstract

AbstractSurface‐enhanced Raman scattering (SERS) has been visualized as a promising analytical technique in marked‐molecule detection for disease diagnosis, environmental pollution, and so on. Noble metal nanoparticles, especially gold nanoparticles (AuNPs), are commonly used to fabricate SERS substrates. Herein, we facilely fabricated a special platform to improve the dispersity and homogeneity of AuNPs. Practically, based on nano‐graphene oxide (GO), a special platform (s‐GO‐PEG‐R'hB) was prepared through GO functionalization with biocompatible poly(ethylene glycol) (PEG), acid‐activated fluorescence molecule (Rhodamine B lactam derivative, R'hB) and thiol sites with cysteamine. AuNPs were then in situ grown on s‐GO‐PEG‐R'hB sheets to provide GO/AuNPs nanocomposite (Au@s‐GO‐PEG‐R'hB) for use as an efficient SERS substrate, which can exert unique electromagnetic characteristics of AuNPs and improve its dispersity. With systematic morphology and composition characterizations, it was confirmed that uniform AuNPs were located on multi‐functionalized GO sheets in Au@s‐GO‐PEG‐R'hB as we designed. Au@s‐GO‐PEG‐R'hB performed well in SERS detection towards 4‐aminothiophenol (4‐ATP) and p‐phenylenediamine (PD), with preferable sensibility, stability and effectiveness. With well‐knit SERS results, it is indicated that Au@s‐GO‐PEG‐R'hB could take the advantages of inherent electrochemical properties of AuNPs and functionalized GO to be a potential substrate in SERS detection. Thus, it is foreseen that Au@s‐GO‐PEG‐R'hB can meet diverse SERS sensing demands in real life.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3