Multipotent Stromal Cells Alleviate Inflammation, Neuropathology, and Symptoms Associated with Globoid Cell Leukodystrophy in the Twitcher Mouse

Author:

Scruggs Brittni A.12,Zhang Xiujuan1,Bowles Annie C.13,Gold Peter A.1,Semon Julie A.1,Fisher-Perkins Jeanne M.4,Zhang Shijia12,Bonvillain Ryan W.1,Myers Leann5,Li Su Chen6,Kalueff Allan V.2,Bunnell Bruce A.124

Affiliation:

1. Center for Stem Cell Research and Regenerative Medicine, SL-99, New Orleans, Louisiana, USA

2. Department of Pharmacology, SL-83, New Orleans, Louisiana, USA

3. Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA

4. Division of Regenerative Medicine, Tulane University National Primate Center, Covington, Louisiana, USA

5. Department of Biostatistics & Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA

6. Department of Biochemistry and Molecular Biology, SL-43, Tulane University School of Medicine, New Orleans, Louisiana, USA

Abstract

Abstract Globoid cell leukodystrophy (GLD) is a common neurodegenerative lysosomal storage disorder caused by a deficiency in galactocerebrosidase (GALC), an enzyme that cleaves galactocerebroside during myelination. Bone marrow transplantation has shown promise when administered to late-onset GLD patients. However, the side effects (e.g., graft vs. host disease), harsh conditioning regimens (e.g., myelosuppression), and variable therapeutic effects make this an unsuitable option for infantile GLD patients. We previously reported modest improvements in the twitcher mouse model of GLD after intracerebroventricular (ICV) injections of a low-dose of multipotent stromal cells (MSCs). Goals of this study were to improve bone marrow-derived MSC (BMSC) therapy for GLD by increasing the cell dosage and comparing cell type (e.g., transduced vs. native), treatment timing (e.g., single vs. weekly), and administration route (e.g., ICV vs. intraperitoneal [IP]). Neonatal twitcher mice received (a) 2 × 105 BMSCs by ICV injection, (b) 1 × 106 BMSCs by IP injection, (c) weekly IP injections of 1 × 106 BMSCs, or (d) 1 × 106 lentiviral-transduced BMSCs overexpressing GALC (GALC-BMSC) by IP injection. All treated mice lived longer than untreated mice. However, the mice receiving peripheral MSC therapy had improved motor function (e.g., hind limb strength and rearing ability), twitching symptoms, and weight compared to both the untreated and ICV-treated mice. Inflammatory cell, globoid cell, and apoptotic cell levels in the sciatic nerves were significantly decreased as a result of the GALC-BMSC or weekly IP injections. The results of this study indicate a promising future for peripheral MSC therapy as a noninvasive, adjunct therapy for patients affected with GLD.

Funder

National Institutes of Neurological Disorders and Stroke

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3