Human Placenta-Derived Mesenchymal Stem Cells Promote Hepatic Regeneration in CCl4-Injured Rat Liver Model via Increased Autophagic Mechanism

Author:

Jung Jieun1,Choi Jong Ho1,Lee Youjin1,Park Jong-Wan2,Oh Il-Hoan3,Hwang Seong-Gyu4,Kim Kwang-Soo5,Kim Gi Jin1

Affiliation:

1. Department of Biomedical Science, CHA University, Seoul, Republic of Korea

2. Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea

3. Catholic High Performance Cell Therapy Center, The Catholic University of Korea, Seoul, Republic of Korea

4. Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea

5. Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, USA

Abstract

Abstract Mesenchymal stem cells (MSCs) have great potential for cell therapy in regenerative medicine, including liver disease. Even though ongoing research is dedicated to the goal of bringing MSCs to clinical applications, further understanding of the complex underlying mechanisms is required. Autophagy, a type II programmed cell death, controls cellular recycling through the lysosomal system in damaged cells or tissues. However, it is still unknown whether MSCs can trigger autophagy to enhance regeneration and/or to provide a therapeutic effect as cellular survival promoters. We therefore investigated autophagy's activation in carbon tetrachloride (CCl4)-injured rat liver following transplantation with chorionic plate-derived MSCs (CP-MSCs) isolated from placenta. The expression markers for apoptosis, autophagy, cell survival, and liver regeneration were analyzed. Whereas caspase 3/7 activities were reduced (p < .05), the expression levels of hypoxia-inducible factor-1α (HIF-1α) and factors for autophagy, survival, and regeneration were significantly increased by CP-MSCs transplantation. Decreased necrotic cells (p < .05) and increased autophagic signals (p < .005) were observed in CCl4-treated primary rat hepatocytes during in vitro coculture with CP-MSCs. Furthermore, the upregulation of HIF-1α promotes the regeneration of damaged hepatic cells through an autophagic mechanism marked by increased levels of light chain 3 II (LC 3II). These results suggest that the administration of CP-MSCs promotes repair by systemically concomitant mechanisms involving HIF-1α and autophagy. These findings provide further understanding of the mechanisms involved in these processes and will help develop new cell-based therapeutic strategies for regenerative medicine in liver disease.

Funder

Korean Government

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3