Efficient CO2 photoreduction enabled by the energy transfer pathway in metal‐organic framework

Author:

Liu Hai‐Xiong1,Si Duan‐Hui1,Smith Mallory F.2,Li Ren‐Fu1,Li Xi‐Ya1,Li Lan1,Huang Hai‐Bo1,Fang Zhi‐Bin1,Zhou Hong‐Cai2,Liu Tian‐Fu13ORCID

Affiliation:

1. State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou P. R. China

2. Department of Chemistry Texas A&M University College Station Texas USA

3. University of Chinese Academy of Sciences Beijing P. R. China

Abstract

AbstractMany studies in metal‐organic frameworks (MOFs) aiming for high photocatalytic activity resort to self‐assembling both energy donor and acceptor building units in skeleton to achieve effective energy transfer, which, however, usually needs tedious synthetic procedure and design of a new MOF. In this work, we demonstrated that building a Förster resonance energy transfer (FRET) pathway can be realized through suitable molecular doping in a given MOF structure without altering the original porous structure, presenting an alternative strategy to design efficient photocatalysts for CO2 reduction. In situ electron spin resonance, ultrafast transient absorption spectroscopy, and computational studies reveal that the FRET‐induced excitation has dramatically altered the exciton transfer pathway in structure and facilitated electron‐hole separation. As a result, the molecular doped MOFs synthesized through one‐pot reaction show outstanding selectivity (96%) and activity (1314 μmol·g−1·h−1) for CO production versus almost no activity for the pristine MOFs, and this result stands out from existing competitors. Furthermore, the reaction mechanism was proposed and the intermediate signals were detected by in situ diffuse reflectance infrared Fourier transform spectroscopies. This study presents a clear picture of building FRET process in MOFs through molecular doping and provides a new design strategy for MOF‐based photocatalysts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3