VEGF Secretion Drives Bone Formation in Classical MAP2K1+ Melorheostosis

Author:

Allbritton‐King Jules D1ORCID,Maity Jyotirindra1,Patel Amit1ORCID,Colbert Robert A2ORCID,Navid Fatemeh2ORCID,Bhattacharyya Timothy1ORCID

Affiliation:

1. Clinical and Investigative Orthopedics Surgery Unit National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda MD USA

2. Pediatric Translational Research Branch National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda MD USA

Abstract

ABSTRACTPatients with classical melorheostosis exhibit exuberant bone overgrowth in the appendicular skeleton, resulting in pain and deformity with no known treatment. Most patients have somatic, mosaic mutations in MAP2K1 (encoding the MEK1 protein) in osteoblasts and overlying skin. As with most rare bone diseases, lack of affected tissue has limited the opportunity to understand how the mutation results in excess bone formation. The aim of this study was to create a cellular model to study melorheostosis. We obtained patient skin cells bearing the MAP2K1 mutation (affected cells), and along with isogenic control normal fibroblasts reprogrammed them using the Sendai virus method into induced pluripotent stem cells (iPSCs). Pluripotency was validated by marker staining and embryoid body formation. iPSCs were then differentiated to mesenchymal stem cells (iMSCs) and validated by flow cytometry. We confirmed retention of the MAP2K1 mutation in iMSCs with polymerase chain reaction (PCR) and confirmed elevated MEK1 activity by immunofluorescence staining. Mutation‐bearing iMSCs showed significantly elevated vascular endothelial growth factor (VEGF) secretion, proliferation and collagen I and IV secretion. iMSCs were then differentiated into osteoblasts, which showed increased mineralization at 21 days and increased VEGF secretion at 14 and 21 days of differentiation. Administration of VEGF to unaffected iMSCs during osteogenic differentiation was sufficient to increase mineralization. Blockade of VEGF by bevacizumab reduced mineralization in iMSC‐derived affected osteoblasts and in affected primary patient‐derived osteoblasts. These data indicate that patient‐derived induced pluripotent stem cells recreate the elevated MEK1 activity, increased mineralization, and increased proliferation seen in melorheostosis patients. The increased bone formation is driven, in part, by abundant VEGF secretion. Modifying the activity of VEGF (a known stimulator of osteoblastogenesis) represents a promising treatment pathway to explore. iPSCs may have wide applications to other rare bone diseases. © 2023 American Society for Bone and Mineral Research (ASBMR).

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

Oxford University Press (OUP)

Subject

Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3