Molecular design and properties of a P‐N synergistic flame retardant epoxy resin curing agent

Author:

Cheng Hengxing1,Guo Junhong1ORCID,Zhao Tianjing1,Ye Yuan1,Yang Baoping1,Cui Jinfeng1,Mu Bo1ORCID,Bao Xuemei1,Tian Li1,Zhang Xiujun1,Zhou Yingping1

Affiliation:

1. School of Petrochemical Technology Lanzhou University of Technology Lanzhou China

Abstract

AbstractThe utilization of epoxy resin (EP) is widespread across various industries. Nevertheless, its combustibility restricts its broader utilization. Additive flame retardants have proven effective in enhancing EP flame retardancy in recent decades. However, poor weather and aging resistance have always been the defects of added flame retardants. A reactive flame retardant (VPD) was synthesized from 3, 5‐diamino‐1, 2, 4‐triazole and phenylphosphonic dichloride, and was used to prepare VPD/EP flame retardant epoxy thermosets. The mechanical properties of the VPD/EP flame retardant epoxy thermosets are lower than those of pure epoxy, because the distance between molecules of VPD is increased compared with that of DDM, the cross‐linking density of the polymer after curing is decreased, and the intermolecular force is reduced. The VPD/EP flame retardant epoxy thermosets have a 40% reduction in total heat release compared to pure EP, an increase in limiting oxygen index value from 24.7% (pure EP) to 29.4%, and a V‐1 rating in UL‐94 testing. The obtained EP has not only good flame retardancy but also better weather resistance and aging resistance than additive flame retardants.Highlights An intrinsic flame‐retardant P and N coacting EP was designed and synthesized. The intrinsic flame‐retardant EP has excellent weather and aging resistance. The presence of the P, the residual char generated by combustion is denser.

Funder

Natural Science Foundation of Gansu Province

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3