Synthesis of chitosan polyethylene glycol antibody complex for delivery of Imatinib in lung cancer cell lines

Author:

Kamali Mehrdad1,Jafari Hanieh1,Taati Fatemeh2,Mohammadnejad Javad2,Daemi Amin3ORCID

Affiliation:

1. Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran

2. Department of Life Science Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran

3. Department of Medical Biochemistry, Faculty of Medicine Cukurova University Adana Turkey

Abstract

AbstractLung cancer is known as the most common cancer. Although the Ramucirumab antibody is a second‐line treatment for lung cancer, the high interstitial fluid pressure limits the antibody's performance. In this way, Imatinib is a chemotherapeutic drug to reduce the interstitial fluid pressure. Up to now, unfortunately, both Ramucirumab and imatinib have not been reported in one nanosystem for cancer therapy. To fulfill this shortcoming, this paper aims to design a chitosan nanocarrier that loads imatinib and attaches to Ramucirumab for selective bonding to A549. Therefore, this paper aims to develop a polymeric nanosystem for non‐small cell lung cancer (NSCLC) treatment. In first, the chitosan polyethylene glycol nanoparticle is synthesized, loaded with imatinib, and then targeted using Ramucirumab. Afterwards, the CS‐PEG‐Ab‐Im by FTIR, TEM, DLS, zeta potential, and TGA techniques are characterized. The size of CS‐PEG‐Ab‐Im was 25–30 nm, its surface charge was 13.1 mV, and the shape of CS‐PEG‐Ab‐Im was nearly spherical and cylindrical. The therapeutic potential of CS‐PEG‐Ab‐Im was assessed using the A549 cell line. According to the obtained results, the cell viability was 48% after 48 h of treatment of A549 cells using the IC50 concentration of CS‐PEG‐Ab‐Im (100 nanomolar). Moreover, the apoptosis and cell cycle arrest percentages were increased by 3 and 6 times, respectively, as compared to free imatinib. Furthermore, the release rate of imatinib from CS‐PEG‐Ab‐Im in an acidic medium was 17% during 1 h, indicating five times the imatinib release in the natural medium. Eventually, the result of flow cytometry indicates the more apoptotic effect of nanosystem to free imatinib and CS‐PEG‐Ab. Besides, cell arresting result exhibits the CS‐PEG‐Ab‐Im and causes cell arrested at G1 by %8.17. Thus, it can be concluded that CS‐PEG‐Ab‐Im can be an ideal nanosystem in NSCLC treatment.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3