Deep learning models to predict primary open‐angle glaucoma

Author:

Zhou Ruiwen1,Philip Miller J.1,Gordon Mae2,Kass Michael2,Lin Mingquan3ORCID,Peng Yifan3,Li Fuhai45,Feng Jiarui6,Liu Lei1ORCID

Affiliation:

1. Division of Biostatistics Washington University in St. Louis, School of Medicine St. Louis Missouri USA

2. Department of Ophthalmology and Visual Sciences Washington University in St. Louis School of Medicine St. Louis Missouri USA

3. Department of Population Health Sciences Weill Cornell Medicine New York City New York USA

4. Institute for Informatics (I2) Washington University in St. Louis School of Medicine St. Louis Missouri USA

5. Department of Pediatrics Washington University in St. Louis School of Medicine St. Louis Missouri USA

6. Department of Computer Science and Engineering Washington University in St. Louis St. Louis Missouri USA

Abstract

SummaryGlaucoma is a major cause of blindness and vision impairment worldwide, and visual field (VF) tests are essential for monitoring the conversion of glaucoma. While previous studies have primarily focused on using VF data at a single time point for glaucoma prediction, there has been limited exploration of longitudinal trajectories. Additionally, many deep learning techniques treat the time‐to‐glaucoma prediction as a binary classification problem (glaucoma Yes/No), resulting in the misclassification of some censored subjects into the nonglaucoma category and decreased power. To tackle these challenges, we propose and implement several deep‐learning approaches that naturally incorporate temporal and spatial information from longitudinal VF data to predict time‐to‐glaucoma. When evaluated on the Ocular Hypertension Treatment Study (OHTS) dataset, our proposed convolutional neural network (CNN)‐long short‐term memory (LSTM) emerged as the top‐performing model among all those examined. The implementation code can be found online (https://github.com/rivenzhou/VF_prediction).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3