Preparation and characterization of carbon fiber spread tow needled preform and its composite based on novel short yarn needling method

Author:

Guo Dongsheng12,Chen Xiaoming123ORCID,Ren Zhipeng23,Xin Shiji12,Su Xingzhao23,Wu Kaijie23

Affiliation:

1. School of Textile Science and Engineering Tiangong University Tianjin PR China

2. Key Laboratory of Advanced Textile Composite Materials of Ministry of Education Tiangong University Tianjin PR China

3. School of Mechanical Engineering Tiangong University Tianjin PR China

Abstract

AbstractDue to the high fiber volume fraction of carbon fiber spread tow plain weave fabrics, it is difficult for short fibers to be brought into the thickness direction to form needled fiber bundles during the needling process. The interlaminar performance of the carbon fiber spread tow needled preform is weak, and the in‐plane damage is also severe. Responding to this issue, this article proposed a new method for preparing carbon fiber spread tow needled preform based on short yarn needling, which was expected to manufacture high‐performance carbon fiber spread tow needled preform and composite. We conducted experimental research on the preparation and structural characterization of the preform, as well as the Mode I interlaminar mechanical properties and in‐plane tensile properties of composites. The results showed that the fiber volume fraction of the preform significantly increased, reaching to 55.7%–56.1%, which was 25.5%–25.9% higher than that of traditional needled preform. The Mode I interlaminar property of carbon fiber spread tow needled composite reached to 905–4376 J m−2, which was improved by 29.3%–525.1% and 125.8%–1054.6% compared to traditional needled composite and laminated composite, respectively. At the same time, the tensile strength and tensile modulus were also improved by 191.5%–212.2% and 66.2%–78.1% compared to traditional needled composites. The preparation method of carbon fiber spread tow needled preform based on short yarn needling has laid the foundation for the 3D printing molding of dry fiber fabrics and is expected to be applied to high‐quality needling of high thickness and large curvature‐shaped fabric preforms.Highlights A novel method was proposed for preparing high‐performance carbon fiber spread tow needled preform based on short yarn needling. The fiber volume fraction of novel carbon fiber spread tow needled preform significantly increased, reaching to 55.7%–56.1%. The GIc of the novel carbon fiber spread tow needled composite was improved by 29.3%–525.1% compared to the traditional needled composite. The tensile strength and tensile modulus were also improved by 191.5%–212.2% and 66.2%–78.1%, compared to traditional needled composites.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3