Explainable machine learning techniques based on attention gate recurrent unit and local interpretable model‐agnostic explanations for multivariate wind speed forecasting

Author:

Peng Lu12,Lv Sheng‐Xiang3,Wang Lin4ORCID

Affiliation:

1. School of Management Wuhan University of Technology Wuhan China

2. Research Institute of Digital Governance and Management Decision Innovation Wuhan University of Technology Wuhan China

3. School of Business Administration Guangdong University of Finance & Economics Guangzhou China

4. School of Management Huazhong University of Science and Technology Wuhan China

Abstract

AbstractWind power has emerged as a successful component within power systems. The ability to reliably and accurately forecast wind speed is of great importance in maintaining the security and stability of the power grid. However, the significance of explaining prediction models has often been overlooked by researchers. To address this gap, this study introduces a novel approach to wind speed forecasting that incorporates a significant decomposition method, attention‐based machine learning, and local explanation techniques. The proposed model utilizes grid search variational mode decomposition to decompose the wind speed sequence into different modes while employing gate recurrent unit with an attention mechanism to achieve superior forecasting performance. Experimental evaluations conducted on eight real‐world wind speed datasets demonstrate that the proposed approach outperforms other popular models across multiple performance criteria. In two specific experiments, the proposed approach achieved a minimal mean absolute percentage error of 2.74% and 1.70%, respectively. Furthermore, local interpretable model‐agnostic explanations (LIME) were employed to assess the influence of factors, highlighting whether they positively or negatively affected the predicted values.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3