Affiliation:
1. School of Management Wuhan University of Technology Wuhan China
2. Research Institute of Digital Governance and Management Decision Innovation Wuhan University of Technology Wuhan China
3. School of Business Administration Guangdong University of Finance & Economics Guangzhou China
4. School of Management Huazhong University of Science and Technology Wuhan China
Abstract
AbstractWind power has emerged as a successful component within power systems. The ability to reliably and accurately forecast wind speed is of great importance in maintaining the security and stability of the power grid. However, the significance of explaining prediction models has often been overlooked by researchers. To address this gap, this study introduces a novel approach to wind speed forecasting that incorporates a significant decomposition method, attention‐based machine learning, and local explanation techniques. The proposed model utilizes grid search variational mode decomposition to decompose the wind speed sequence into different modes while employing gate recurrent unit with an attention mechanism to achieve superior forecasting performance. Experimental evaluations conducted on eight real‐world wind speed datasets demonstrate that the proposed approach outperforms other popular models across multiple performance criteria. In two specific experiments, the proposed approach achieved a minimal mean absolute percentage error of 2.74% and 1.70%, respectively. Furthermore, local interpretable model‐agnostic explanations (LIME) were employed to assess the influence of factors, highlighting whether they positively or negatively affected the predicted values.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献