Variability in lake bacterial growth and primary production under lake ice: Evidence from early winter to spring melt

Author:

Kivilä E. Henriikka123ORCID,Prėskienis Vilmantas123ORCID,Gaudreault Noémie13ORCID,Girard Catherine123ORCID,Rautio Milla123ORCID

Affiliation:

1. Département des Sciences Fondamentales Université du Québec à Chicoutimi Chicoutimi Québec Canada

2. Centre d'Études Nordiques (CEN) Université Laval Québec Québec Canada

3. Group for Interuniversity Research in Limnology and Aquatic Environment (GRIL) Montreal Québec Canada

Abstract

AbstractClimate change is causing seasonally ice‐covered lakes of the boreal region to undergo changes in their winter regime by altering patterns of precipitation and temperature, often reflected as reduced snow and ice cover duration. The duration, extent and quality of ice, and snow cover have a pivotal role for production and carbon cycling in lakes in winter, with potentially cascading effects for the following open water period. We investigated under‐ice carbon cycling by assessing bacterial growth (including bacterial production, bacterial respiration, and bacterial growth efficiency) and primary production at five water depths during early winter, midwinter, late winter and melting season in a boreal lake, and report significantly different temporal patterns. Bacterial respiration was dominant in early and midwinter, whereas the late winter and melting season were dominated by bacterial production. Multiple linear regression models indicated that high early winter bacterial respiration was associated with senescing phytoplankton, whereas bacterial production was promoted by the onset of spring processes. Collectively, bacterial growth indices were inherently linked with bacterioplankton community composition and specific biomarker taxa. Primary production under ice increased in late winter when light‐blocking snow cover melted, and primary production measured from the lake ice exceeded that of the water column at the melting season. Ice samples hosted diverse eukaryotic communities including photoautotrophs, suggesting that the habitat potential of the understudied lake ice and the role of ice for ecological processes at ice melt should be further explored.

Funder

Canada Foundation for Innovation

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Aquatic Science,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3