Affiliation:
1. Department of Biomedical Engineering, School of Electrical Engineering Iran University of Science and Technology (IUST) Tehran Iran
2. Department of Cognitive Neuroscience University of Tabriz Tabriz Iran
3. Department of Business Management, Faculty of Management and Accounting Allameh Tabataba'i University Tehran Iran
4. Neurobioscince Division Research Center of Bioscience and Biotechnology, University of Tabriz Tabriz Iran
Abstract
AbstractBackgroundDecision‐making is vital in interpersonal interactions and a country's economic and political conditions. People, especially managers, have to make decisions in different risky situations. There has been a growing interest in identifying managers’ personality traits (i.e., risk‐taking or risk‐averse) in recent years. Although there are findings of signal decision‐making and brain activity, the implementation of an intelligent brain‐based technique to predict risk‐averse and risk‐taking managers is still in doubt.MethodsThis study proposes an electroencephalogram (EEG)‐based intelligent system to distinguish risk‐taking managers from risk‐averse ones by recording the EEG signals from 30 managers. In particular, wavelet transform, a time‐frequency domain analysis method, was used on resting‐state EEG data to extract statistical features. Then, a two‐step statistical wrapper algorithm was used to select the appropriate features. The support vector machine classifier, a supervised learning method, was used to classify two groups of managers using chosen features.ResultsIntersubject predictive performance could classify two groups of managers with 74.42% accuracy, 76.16% sensitivity, 72.32% specificity, and 75% F1‐measure, indicating that machine learning (ML) models can distinguish between risk‐taking and risk‐averse managers using the features extracted from the alpha frequency band in 10 s analysis window size.ConclusionsThe findings of this study demonstrate the potential of using intelligent (ML‐based) systems in distinguish between risk‐taking and risk‐averse managers using biological signals.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献