Speeding up macro‐Raman mapping by reducing the number of sampling points

Author:

Vandenabeele Peter12ORCID

Affiliation:

1. Raman Spectroscopy Research Group, Department of Chemistry Ghent University Ghent Belgium

2. Archaeometry Research Group, Department of Archaeology Ghent University Ghent Belgium

Abstract

AbstractMacro‐Raman mapping is an approach that allows to obtain high‐resolution molecular maps of artefacts, over an area of several square centimetres. The method is based on recording thousands of spectra in a grid. The main drawback of this method is that it is very time consuming. A straightforward approach to reduce the measurement time is achieved by reducing the number of points that are measured. Not all points of the map are equally informative: Pixels that are surrounded by similar points might be less interesting to measure. Therefore, an algorithm is proposed to select where to measure and which points to omit. The missing pixels can be filled in a posteriori, by using a suitable interpolation algorithm. The selection of the omitted pixels can be performed based on information that is available from other analytical techniques. In this case, a selection was made based on the local variances in a colour picture. The approach is evaluated by recording macro‐Raman maps of details of a Neptune watercolour painting on paper. In a first stage, the Raman intensities of the scaled and baseline corrected spectra at specific band positions were colour coded and plotted as Raman maps. The interpolation of the Raman maps yielded satisfying results. The image outline could clearly be identified in the maps, and the differently coloured zones were distinguished. Next to this univariate approach, it was demonstrated that also a multivariate data extraction method (principal component analysis) is compatible with the proposed algorithm to measure 25% less datapoints.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3