Reciprocal recurrent selection based on genetic complementation: An efficient way to build heterosis in diploids due to directional dominance

Author:

Covarrubias‐Pazaran Giovanny12ORCID,Werner Christian12,Gemenet Dorcus12

Affiliation:

1. Excellence in Breeding Platform Consultative Group of International Agricultural Research Texcoco Mexico

2. International Maize and Wheat Improvement Center (CIMMYT) Texcoco Mexico

Abstract

AbstractDepending on the trait architecture and reproduction system, selection strategies in plant breeding focus on the accumulation of additive, dominance effects, or both. Innovation in the exploitation of dominance‐effect‐based heterosis has been limited since the proposal of general combining ability (GCA)‐based approaches. We propose the use of a new surrogate of genetic complementation between genetic pools to increase accumulation of dominance effects and heterosis. We simulated breeding programs to show how reciprocal recurrent selection (RRS) by genetic complementation would build the dominance‐based heterosis cheaper than GCA‐based approaches and used real phenotypic data from hybrid maize (Zea mays) to demonstrate the underlying concepts. We found RRS by genetic complementation to be an attractive and viable strategy to exploit dominance, build de novo heterotic pools, and enhance the current GCA‐based approaches. If demonstrated in practice, we hypothesized that this approach would lower the cost of hybrid breeding drastically and contribute to food security.

Funder

Bill and Melinda Gates Foundation

Publisher

Wiley

Subject

Agronomy and Crop Science

Reference53 articles.

1. Genetic drift and the loss of alleles versus heterozygosity

2. Relationship between single-cross performance and molecular marker heterozygosity

3. Role of chromosome blocks in heterosis and estimates of dominance and overdominance;Bingham E. T.;Concepts and Breeding of Heterosis in Crop Plants,1998

4. Heterosis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3