Adaptive optimized backstepping tracking control for full‐state constrained nonlinear strict‐feedback systems without using barrier Lyapunov function method

Author:

Zhu Boyan1ORCID,Xu Ning2ORCID,Zong Guangdeng3ORCID,Zhao Xudong1ORCID

Affiliation:

1. College of Control Science and Engineering Bohai University Jinzhou Liaoning China

2. College of Information Science and Technology Bohai University Jinzhou Liaoning China

3. School of Control Science and Engineering Tiangong University Tianjin China

Abstract

AbstractIn this article, the problem of adaptive optimal tracking control is studied for nonlinear strict‐feedback systems. While not directly measurable, the states of these systems are subject to both time‐varying and asymmetric constraints. Bypassing the conventional barrier Lyapunov function method, the constrained system is transformed into its unconstrained counterpart, thereby obviating the need for feasibility conditions. A specially designed reinforcement learning (RL) algorithm, featuring an observer‐critic‐actor architecture, is deployed in an adaptive optimal control scheme to ensure the stabilization of the converted unconstrained system. Within this architecture, the observer estimates the unmeasurable system states, the critic evaluates the control performance, and the actor executes the control actions. Furthermore, enhancements to the RL algorithm lead to relaxed conditions of persistent excitation, and the design methodology for the observer overcomes the restrictions imposed by the Hurwitz equation. The Lyapunov stability theorem is applied for two primary purposes: to ascertain the boundedness of all signals within the closed‐loop system, and to ensure the accuracy of the output signal in tracking the desired reference trajectory. Finally, numerical and practical simulations are provided to corroborate the effectiveness of the proposed control strategy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3