Deep learning analysis of mid‐infrared microscopic imaging data for the diagnosis and classification of human lymphomas

Author:

Zelger P.1,Brunner A.2,Zelger B.2,Willenbacher E.3,Unterberger S. H.4,Stalder R.5,Huck C. W.6,Willenbacher W.37,Pallua J. D.8ORCID

Affiliation:

1. University Hospital of Hearing, Voice and Speech Disorders Medical University of Innsbruck Innsbruck Austria

2. Institute of Pathology, Neuropathology and Molecular Pathology Medical University of Innsbruck Innsbruck Austria

3. University Hospital of Internal Medicine V, Hematology & Oncology Medical University of Innsbruck Innsbruck Austria

4. Institute of Material‐Technology Leopold‐Franzens University Innsbruck Innsbruck Austria

5. Institute of Mineralogy and Petrography Leopold‐Franzens University Innsbruck Innsbruck Austria

6. Institute of Analytical Chemistry and Radiochemistry Innsbruck Austria

7. Oncotyrol, Centre for Personalized Cancer Medicine Innsbruck Austria

8. University Hospital for Orthopedics and Traumatology Medical University of Innsbruck Innsbruck Austria

Abstract

AbstractThe present study presents an alternative analytical workflow that combines mid‐infrared (MIR) microscopic imaging and deep learning to diagnose human lymphoma and differentiate between small and large cell lymphoma. We could show that using a deep learning approach to analyze MIR hyperspectral data obtained from benign and malignant lymph node pathology results in high accuracy for correct classification, learning the distinct region of 3900 to 850 cm−1. The accuracy is above 95% for every pair of malignant lymphoid tissue and still above 90% for the distinction between benign and malignant lymphoid tissue for binary classification. These results demonstrate that a preliminary diagnosis and subtyping of human lymphoma could be streamlined by applying a deep learning approach to analyze MIR spectroscopic data.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3