StainGAN: Learning a structural preserving translation for white blood cell images

Author:

Huang Maoye1ORCID,Wang Tao2ORCID,Cai Yuanzheng2,Fan Haoyi1ORCID,Li Zuoyong2

Affiliation:

1. School of Computer and Artificial Intelligence Zhengzhou University Zhengzhou China

2. Fujian Provincial Key Laboratory of Information Processing and Intelligent Control College of Computer and Control Engineering, Minjiang University Fuzhou China

Abstract

AbstractAnalysis of white blood cells in blood smear images plays a vital role in computer‐aided diagnosis for the analysis and treatment of many diseases. However, different techniques for blood smear preparation result in images with large appearance variations, which limits the performance of large‐scale machine learning algorithms. In this paper, we propose StainGAN, an image translation framework to transform the conventional Wright‐stained white blood cell images into their rapidly‐stained counterpart. Moreover, we designed a cluster‐based learning strategy that does not require manual annotations and a multi‐scale discriminator that incorporates a richer hierarchy of the spatial context to generate sharper images with better semantic consistency. Experimental results on multiple real‐world datasets prove the effectiveness of our proposed framework. Moreover, we show that the transformed images from StainGAN can be used to boost the downstream segmentation performance under the label‐limiting scenario.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised stain augmentation enhanced glomerular instance segmentation on pathology images;International Journal of Computer Assisted Radiology and Surgery;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3