The effect of low‐dose photodynamic therapy using the photosensitizer chloroaluminum phthalocyanine on a scratch wound model in skin fibroblasts

Author:

Giannakopoulos Efstathios12,Katopodi Annita3,Rallis Michail2,Politopoulos Konstantinos1,Alexandratou Eleni1ORCID

Affiliation:

1. Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering National Technical University of Athens Athens Greece

2. Division of Pharmaceutical Technology, School of Pharmacy National and Kapodistrian University of Athens Athens Greece

3. Laboratory of Organic Chemistry, School of Chemical Engineering National Technical University of Athens Athens Greece

Abstract

AbstractDifferent approaches on wound healing have been developed over the years but they suffer from high costs and adverse effects for the patients. The current paper was designed to study low dose PDT, a novel healing approach, in an in vitro fibroblasts wound healing model. Chloroaluminum phthalocyanine (AlClPc) was used as photosensitizer and was activated by a red diode laser at 661 nm. After PDT optimization, wound closure rate and reactive oxygen species were quantified by image processing and analysis. Our results revealed that wound healing rates were significantly higher in PDT treated groups than in the control. Additionally, the study revealed that a prolonged ROS increase did not promote wound closure, while a small increase acted as a trigger, resulting in faster wound closure. Concluding, low dose PDT using AlClPc enhances wound healing in vitro in a ROS dependent manner, allowing the assumption of similar positive effects in vivo.

Funder

Hellenic Academic Libraries Link

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3