A practical solution to improve the field of view in circular scanning‐based photoacoustic tomography

Author:

Ranjbaran Seyed Mohsen1ORCID,Zafar Mohsin1,Saint‐Martin Loïc1,Islam Md Tarikuls1,Avanaki Kamran12ORCID

Affiliation:

1. The Richard and Loan Hill Department of Biomedical Engineering University of Illinois at Chicago Chicago Illinois USA

2. Department of Dermatology University of Illinois at Chicago Chicago Illinois USA

Abstract

AbstractOne of the primary challenges in ring single‐element photoacoustic tomography systems is the low image quality in areas away from the center of the ring. This is mainly due to the limited field of view (FOV) of each transducer, which in turn reduces the imaging FOV. To address this shortcoming, we have put forward a practical and straightforward solution to enhance the FOV of circular scanning‐based photoacoustic tomography (CS‐PAT). This is accomplished by placing transducers at different angles instead of using a single transducer placed at a normal angle to the imaging target. We also modified the ring scanner inner wall surface to significantly reduce photoacoustic reverberation. By imaging several phantoms, we show a significant improvement in the images generated by our system imaging from 4.1 to over 7 for the signal‐to‐noise ratio and structural similarity index increased from 41% to 70%.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3