Optical method supported by machine learning for urinary tract infection detection and urosepsis risk assessment

Author:

Wityk Paweł12ORCID,Sokołowski Patryk3,Szczerska Małgorzata13ORCID,Cierpiak Kacper3,Krawczyk Beata12,Markuszewski Michał J.1

Affiliation:

1. Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy Medical University of Gdańsk Gdańsk Poland

2. Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry Gdańsk University of Technology Gdańsk Poland

3. Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics Gdańsk University of Technology Gdańsk Poland

Abstract

AbstractThe study presents an optical method supported by machine learning for discriminating urinary tract infections from an infection capable of causing urosepsis. The method comprises spectra of spectroscopy measurement of artificial urine samples with bacteria from solid cultures of clinical E. coli strains. To provide a reliable classification of results assistance of 27 algorithms was tested. We proved that is possible to obtain up to 97% accuracy of the measurement method with the use of use of machine learning. The method was validated on urine samples from 241 patients. The advantages of the proposed solution are the simplicity of the sensor, mobility, versatility, and low cost of the test.

Funder

Ministry of Education and Science

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3