Demonstrating drug treatment efficacies by monitoring superoxide dynamics in human lung cancer cells with time‐lapse fluorescence microscopy

Author:

Konjalwar Shalaka1ORCID,Ceyhan Busenur1ORCID,Rivera Oscar2,Nategh Parisa1ORCID,Neghabi Mehrnoosh1ORCID,Pavlovic Mirjana1,Allani Shailaja2ORCID,Ranji Mahsa1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science Florida Atlantic University Boca Raton Florida USA

2. Center for Molecular Biology and Biotechnology Florida Atlantic University Boca Raton Florida USA

Abstract

AbstractMetformin hydrochloride, an antihyperglycemic agent, and sulindac, a nonsteroidal anti‐inflammatory drug, are FDA‐approved drugs known to exert anticancer effects. Previous studies demonstrated sulindac and metformin's anticancer properties through mitochondrial dysfunction and inhibition of mitochondrial electron transport chain complex I and key signaling pathways. In this study, various drugs were administered to A549 lung cancer cells, and results revealed that a combination of sulindac and metformin enhanced cell death compared to the administration of the drugs separately. To measure superoxide production over time, we employed a time‐lapse fluorescence imaging technique using mitochondrial‐targeted hydroethidine. Fluorescence microscopy data showed the most significant increases in superoxide production in the combination treatment of metformin and sulindac. Results showed significant differences between the combined drug treatment and control groups and between the positive control and control groups. This approach can be utilized to quantify the anticancer efficacy of drugs, creating possibilities for additional therapeutic options.

Funder

Florida Atlantic University

National Institutes of Health

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In-Vehicle Sensing and Data Analysis for Older Drivers with Mild Cognitive Impairment;2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3