Ovarian cancer identification technology based on deep learning and second harmonic generation imaging

Author:

Kang Bingzi1,Chen Siyu2,Wang Guangxing1,Huang Yuhang1,Wu Han1,He Jiajia1,Li Xiaolu1,Xi Gangqin1ORCID,Wu Guizhu3,Zhuo Shuangmu1ORCID

Affiliation:

1. School of Science, Jimei University Xiamen China

2. College of Computer Engineering, Jimei University Xiamen China

3. Department of Gynecology Obstetrics and Gynecology Hospital, School of Medicine, Tongji University Shanghai China

Abstract

AbstractOvarian cancer is among the most common gynecological cancers and the eighth leading cause of cancer‐related deaths among women worldwide. Surgery is among the most important options for cancer treatment. During surgery, a biopsy is generally required to screen for lesions; however, traditional case examinations are time consuming and laborious and require extensive experience and knowledge from pathologists. Therefore, this study proposes a simple, fast, and label‐free ovarian cancer diagnosis method that combines second harmonic generation (SHG) imaging and deep learning. Unstained fresh human ovarian tissues were subjected to SHG imaging and accurately characterized using the Pyramid Vision Transformer V2 (PVTv2) model. The results showed that the SHG imaged collagen fibers could quantify ovarian cancer. In addition, the PVTv2 model could accurately differentiate the 3240 SHG images obtained from our imaging collection into benign, normal, and malignant images, with a final accuracy of 98.4%. These results demonstrate the great potential of SHG imaging techniques combined with deep learning models for diagnosing the diseased ovarian tissues.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3