Digital diaphanoscopy of maxillary sinus pathologies supported by machine learning

Author:

Bryanskaya Ekaterina O.1ORCID,Dremin Viktor V.1ORCID,Shupletsov Valery V.1ORCID,Kornaev Alexey V.2ORCID,Kirillin Mikhail Yu.34ORCID,Bakotina Anna V.5ORCID,Panchenkov Dmitry N.5ORCID,Podmasteryev Konstantin V.1ORCID,Artyushenko Viacheslav G.6ORCID,Dunaev Andrey V.1ORCID

Affiliation:

1. Research and Development Center of Biomedical Photonics Orel State University Orel Russia

2. Research Center for Artificial Intelligence Innopolis University Innopolis Russia

3. Institute of Applied Physics RAS Nizhny Novgorod Russia

4. N.I. Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russia

5. Yevdokimov A.I. Moscow State University of Medicine and Dentistry Moscow Russia

6. art photonics GmbH Berlin Germany

Abstract

AbstractMaxillary sinus pathologies remain among the most common ENT diseases requiring timely diagnosis for successful treatment. Standard ENT inspection approaches indicate low sensitivity in detecting maxillary sinus pathologies. In this paper, we report on capabilities of digital diaphanoscopy combined with machine learning tools in the detection of such pathologies. We provide a comparative analysis of two machine learning approaches applied to digital diapahnoscopy data, namely, convolutional neural networks and linear discriminant analysis. The sensitivity and specificity values obtained for both employed approaches exceed the reported accuracy indicators for traditional screening diagnosis methods (such as nasal endoscopy or ultrasound), suggesting the prospects of their usage for screening maxillary sinuses alterations. The analysis of the obtained values showed that the linear discriminant analysis, being a simpler approach as compared to neural networks, allows one to detect the maxillary sinus pathologies with the sensitivity and specificity of 0.88 and 0.98, respectively.

Funder

Foundation for Assistance to Small Innovative Enterprises

Russian Foundation for Basic Research

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Reference44 articles.

1. Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients

2. Sinonasal T-Cell Expression of Cytotoxic Mediators Granzyme B and Perforin is Reduced in Patients with Chronic Rhinosinusitis

3. Course of olfaction after sinus surgery for chronic rhinosinusitis

4. Gesundheitsberichterstattung des bundes.gemeinsam getragen von rki und destatis.https://www.gbe-bund.de/gbe/pkg_isgbe5.prc_isgbe2022.

5. M.Villarroel D.Blackwell A.Jen Tables of Summary Health Statistics for U.S. Adults: 2018 National Health Interview Survey National Center for Health Statistics 1–9(2019).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3