Amendments of weld formation in human skin laser soldering

Author:

Ryabkin Dmitrii12ORCID,Meglinsk Igor34ORCID,Gerasimenko Alexander12ORCID

Affiliation:

1. Institute of Biomedical Systems National Research University of Electronic Technology Moscow Russia

2. Institute for Bionic Technologies and Engineering I.M. Sechenov First Moscow State Medical University Moscow Russia

3. Optoelectronics and Measurement Techniques University of Oulu Oulu Finland

4. College of Engineering and Physical Sciences Aston University Birmingham UK

Abstract

AbstractA computational modeling is employed for quantitative assessment of weld formation and area of tissue temperature necrosis during the human skin laser soldering. The evaluation is carried out depending on the components composition of using solders, including bovine serum albumin (BSA), indocyanine green (ICG), and carbon nanotubes (CNTs), as well as the angle of incidence of laser light and its pulse duration. The influence of CNT on the change of thermodynamic characteristics of albumin denaturation and the rate of formation of the laser weld is investigated. The obtained results suggest to limit the duration of laser light pulse by temperature relaxation time to minimize transfer of thermal energy to reduce the heating of human skin tissues. The developed model has a great potential for further optimization of laser soldering of biological tissues technology with greater efficiency in minimizing the weld area.

Funder

Academy of Finland

Russian Science Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3