Sensitivity of Frequency Domain Near Infrared Spectroscopy for Neurovascular Structure Detection in Biotissue Volume: Numerical Modeling Results

Author:

Belsheva Mariia1,Safonova Larisa1ORCID,Shkarubo Alexey2

Affiliation:

1. Department of Biomedical Engineering Bauman Moscow State Technical University Moscow Russia

2. Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation Moscow Russia

Abstract

ABSTRACTThrough numerical modeling, it has been determined that near infrared spectroscopy with a frequency domain approach can detect neurovascular structures with diameters from 0.5 mm at source‐detector distances of 5–8 mm, depending on optical parameters and technical implementation of the method. Among the five classical machine learning methods considered, quadratic discriminant analysis is the most effective for detection. Furthermore, it has been demonstrated that the use of a photomultiplier tube and the registration of both amplitude and phase signal components exhibit the highest sensitivity. Spectroscopy can rival modern ultrasound for detecting arterial vessels. A cross‐shaped probe configuration improves sensitivity, and the ratio of reduced scattering coefficient values at different wavelengths is informative for blood‐filled vessel detection. These findings are consistent with and significantly extend previous experimental in vivo and in situ studies and could be valuable for intraoperative diagnostic tasks, particularly in neurosurgery.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3