EPIDL: Towards efficient and privacy‐preserving inference in deep learning

Author:

Nie Chenfei1ORCID,Zhou Zhipeng1,Dong Mianxiong2,Ota Kaoru2,Li Qiang1

Affiliation:

1. College of Computer Science and Technology Jilin University Changchun China

2. Department of Sciences and Informatics Muroran Institute of Technology Muroran Japan

Abstract

SummaryDeep learning has shown its great potential in real‐world applications. However, users(clients) who want to use deep learning applications need to send their data to the deep learning service provider (server), which can make the client's data leak to the server, resulting in serious privacy concerns. To address this issue, we propose a protocol named EPIDL to perform efficient and secure inference tasks on neural networks. This protocol enables the client and server to complete inference tasks by performing secure multi‐party computation (MPC) and the client's private data is kept secret from the server. The work in EPIDL can be summarized as follows: First, we optimized the convolution operation and matrix multiplication, such that the total communication can be reduced; Second, we proposed a new method for truncation following secure multiplication based on oblivious transfer and garbled circuits, which will not fail and can be executed together with the ReLU activation function; Finally, we replace complex activation function with MPC‐friendly approximation function. We implement our work in C++ and accelerate the local matrix computation with CUDA support. We evaluate the efficiency of EPIDL in privacy‐preserving deep learning inference tasks, such as the time to execute a secure inference on the MNIST dataset in the LeNet model is about 0.14 s. Compared with the state‐ofthe‐art work, our work is 1.8–98 faster over LAN and WAN, respectively. The experimental results show that our EPIDL is efficient and privacy‐preserving.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3