Design of a PV‐fed electric vehicle charging station with a combination of droop and master‐slave control strategy

Author:

Krishnan Nair Divya1ORCID,Prasad Krishnamachar1,Lie Tek T.1

Affiliation:

1. School of Engineering, Computer and Mathematical Sciences Auckland University of Technology Auckland New Zealand

Abstract

AbstractElectric vehicles (EVs) are becoming essential elements for both the transport and power sectors. Consequently, they need a suitable charging infrastructure at the same time. Electric vehicle charging stations (EVCS) assisted by photovoltaic (PV) panels draw attention due to minimal expenditure, increased environmental awareness, and a consistent increase in the effectiveness of the PV modules. In this paper, a combination control scheme utilizing the merits of both droop and master‐control strategies for the EVCS is proposed. In addition, an isolated bidirectional DC‐DC converter combined with the snubber circuits and a three‐level boost converter that utilizes a capacitance‐voltage control design is used to further enhance the system stability. The design of the EVCS is formulated and validated through MATLAB/Simulink.

Funder

School of Engineering

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3